Posts Tagged ‘twist field’

Renormalization

June 25, 2017

I’m working on the math for the Unitary Twist Field Theory sim. The first sim to run is the easiest I know of, the electron/photon interaction, and if the theory doesn’t yield some reasonably good results, the theory is dead, there’s no point in going further. If that happens, hopefully there will be an indication of how to modify it to make it work, but this will be a defining moment for my work. Just recently, something quite astonishing came out of this work to find the equations of motion for the precursor field of this theory.

In the process of working out the force computations, I’ve been able to winnow down the range of possible equations that will rule the components of the interaction. Note first that the sim I am doing is discrete while the theory is continuous, simply to allow a practical implementation of a computer sim. I can add as many nodes as I want to improve accuracy, but the discrete implementation will be a limitation of the approach I am taking. In addition, forces can be local neighborhood only since according to the theory there is only one element to the precursor field, you can’t somehow influence elements through or outside the immediate neighborhood of an element. The field is also incompressible–you cant somehow squeeze more twist elements into a volume.

To express a twist with all of the required degrees of freedom in R3 + I, I use the e^i/2Pi(theta t – k x) factor. Forces on these twists must be normal to the direction of propagation–you can’t somehow speed it up or slow it down. Forces cannot add magnitude to the field–in order to enforce particle quantization (for example E=hv) the theory posits that each element is direction only, and has no magnitude. I use the car-seat cover analogy–these look like a plane of wooden balls, which can rotate (presumably to massage or relieve tension on your back while driving), but there is no magnitude component. The theory posits that all particles of the particle zoo emerge from conservative variations and changes in the direction of twist elements. To enforce rotation quantization, it is necessary that there be a background rotation state and a corresponding restoring force for each element.

In the process of working out the neighborhood force for each field element, I made an interesting, if not astonishing, discovery. At first, it seemed necessary that the neighborhood force would have a 1/r^n component. Since my sim is discrete, I will have to add a approximation factor to account for distances to the nearest neighbor element. Electrostatic fields, for example, apply force according to 1/r^2. This introduces a problem as the distance between elements approaches zero, the forces involved go to infinity. This is particularly an issue in QFT because the Standard Model assumes a point electron and QFT computations require assessing forces in the immediate neighborhood of the point. To make this work, to remove the infinities, renormalization is used to cancel out math terms that approach infinity. Feynman, for example, is documented to have stated that he didn’t like this device, but it generated correct verifiable results so he accepted it.

I realized that there can be no central (1/r^n) forces in the unitary twist field (this is the nail in the coffin for trying to use an EM field to form soliton particles. You can’t start with an EM field to generate gravitational effects–a common newbie thought partly due to the central force similarity, and you can’t use an EM field to form quantized particles either). Central force fields always result from any granular quantized system of particles issued from a point source into Rn, so assuming forces have a 1/r^n factor just can’t work. The granular components don’t dissipate, after all, where does the dissipated element go? In twist theory, you can’t topologically make a twist vanish. Thus the approximation factor in the sim must be unitary even if the field element distance varies.

Then a powerful insight hit me–if you can’t have a precursor field force dependent on 1/r^n, you should not need to renormalize. I now make the bold assertion that if you need to renormalize in a quantized system, something is wrong with your model. And, of course, then I stared at what that means for QFT, in particular the assumption that the electron is a point particle. There’s a host of problems with that anyway–in the last post I mentioned the paradox of an electron ever capturing a photon if it is a point with essentially zero radius. Here, the infinite energies near the point electron or any charged point particle have to be managed by renormalization–so I make the outrageous claim that the Standard Model got this part wrong. Remember though–this blog is not about trying to convince you (the mark of a crackpot) but just to document what I am doing and thinking. I don’t expect to convince anyone of this, especially given the magnitude of this discovery. I seriously questioned it myself and will continue to do so.

The Unitary Twist Field theory does not have this problem because it assumes the electron is a closed loop twist with no infinite energies anywhere.

Agemoz

Preparing First Collision Sim

June 22, 2017

I’ve been working fairly consistently on the simulation environment for the unitary twist field theory. I’m getting ready to set up a photon/electron collision, modeled by the interaction of a linear twist with a twist around a loop. The twist is represented by e^I(t theta – k x), yes, the same expression that is used for quantum wave functions (I’ve often wondered if we’ve misinterpreted that term as a wave when in fact the math for a twist has been in front of our noses all along).

This is a great first choice for a collision sim because in my mind there’s always been a mystery about photon/particle interactions. If the electron is really a point particle as the Standard Model posits, how can a photon that is many orders of magnitude larger always interact with one and only one electron, even if there are a gazillion electrons within one wavelength of the photon? The standard answer is that I’m asking the wrong or invalid question–a classical question to a quantum situation. To which I think, maybe, but quantum mechanics does not answer it, and I just get this sense that refusing to pursue questions like this denies progress in understanding how things work.

In twist theory there appears to be an elegant geometrical answer that I’m pretty sure the simulation will show–counting my chickens before they are in my hand, to be sure–the downfall of way too many bright-eyed physics enthusiasts. But as I’ve worked out before, the precursor twist field is an incompressible and non-overlapping twist field. If the electron is a closed loop of twists, and within the loop the twists revert back to the I direction (see previous posts for a little more detailed description), then any linear twist propagating through the loop will add a delta twist to some point in the interior of the loop. Since you cannot somehow overlap twists (there’s only one field here, you can’t somehow slide twists through each other. Each point has a specific twist value, unlike EM fields where you linearly combine distinct fields). As a result, the twist of the loop can unwind the linear twist going through it, causing the photon to disappear and the close loop will pick up the resulting linear twist momentum. This isn’t really a great explanation, so here’s a picture of what I think will happen. The key is the fact that the precursor field has one twist value for every point in R3. It’s an incompressible and unitary field–you cant have two twist values (or a linear combination–it’s unitary magnitude at every point!) at a given point, so the photon twists have to affect the twist infrastructure of the loop if it passes through the loop. It really will act a lot like a residue inside a surface, where doing a contour integral will exactly reflect the number of residues inside.

At least that’s what I think will happen–stay tuned. You can see why I chose this interaction as the first sim setup to try.

Agemoz

Sim Infrastructure in Place

June 2, 2017

An exciting day! I found a better working environment for sims, and very quickly was able to get some elementary particle sims up and running. I like to think I finally actually did something noteworthy by creating an easy to use infrastructure that allows me to investigate and test mathematical concepts such as the unitary twist field theory that are far too difficult to solve analytically, even with simplifying assumptions. If I had chosen physics as a career path, one major area for contribution is setting up new environments or mathematical tools that allow others to build and test theories.
I have been writing a C program but it was taking forever and I was bogging down on the UI and result display. So I took a look at the Unity gaming SDK and realized this might be a perfect way to get past that and quickly into theory implementation. It more than met my expectations!
CERN has nothing on me! Next up are Petavolt collisions! Well, not really, first I have a lot of model generation to do to truly represent the precursor field theory I’ve detailed in previous posts. In addition, the display is very coarse and needs to be refined–the cubes are nodes in discretized points on the twist.  I want to get fancier but for now it’s pretty amazing to watch as the loop twists and turns.  The funny and amazing thing is, though, I really could do a collision sim in a few hours. This infrastructure makes it very easy to set up interaction math and boundary conditions. Maybe my theory is hogwash, but this infrastructure isn’t–could I have finally made a usable contribution to science? If any of you are interested in this, send me a comment or email and maybe I’ll detail what I’m doing here.

Special Relativity and Unitary Twist Theory

January 30, 2017

I’ve been working diligently on the details of how the quantizing behavior of a unitary twist vector field would form loops and other topological structures underlying a particle zoo. It has been a long time since I’ve talked about its implications for special relativity and the possibilities for deriving gravity, but it was actually the discovery of how the theory geometrically derives the time and space dilation factor that convinced me to push forward in spite of overwhelming hurdles to convincing others about the unitary twist theory approach.

In fact, I wrote to several physicists and journals because to me the special relativity connection was as close as I could come to a proof that the idea was right. But here I discovered just how hard it is to sway the scientific community, and this became my first lesson in becoming a “real” scientist. Speculative new theories occupy a tiny corner in the practical lives of scientists, I think–the reality is much reading and writing, much step-by-step incremental work, and journals are extremely resistant to accept articles that might cause embarrassment such as the cold-fusion fiasco.

Back in my formative days for physics, sci.physics was the junk physics newsgroup and sci.physics.research was the real deal, a moderated newsgroup where you could ask questions and get a number of high level academic and research scientists to respond. Dr. John Baez of UC Riverside was probably one of the more famous participants–he should be for his book “Gauge Fields, Knots and Gravity”, which is one of the more accessible texts on some of the knowledge and thinking leading to thinking about gravity. But on this newsgroup he was the creator of the Crackpot Index, and this more than anything else corrected my happy over-enthusiasm for new speculative thinking. It should be required reading for anyone considering a path in the sciences such as theoretical physics. Physicists 101, if you will–it will introduce you hard and fast to just how difficult it will be to be notable or make a contribution in this field.

I’m not 100% convinced, as I’ve discussed in previous posts, that there isn’t a place for speculative thinking such as mine, but this is where I discovered that a deep humility and skepticism toward any new thinking is required. You *must* assume that speculation is almost certainly never going to get anywhere with journal reviewers or academic people. Nobody is going to take precious time out of their own schedule to investigate poorly thought-out ideas or even good ideas that don’t meet an extremely high standard.

So, I even presented my idea to Dr. Baez, and being the kind and tolerant man he is, he actually took the time review what I was thinking at that time–has to be 20 years ago now! Of all the work I have done, none has been as conclusive to me as the connection to special relativity–but it did not sway him. I was sure that there had to be something to it, but he only said the nature of special relativity is far reaching and he was not surprised that I found some interesting properties of closed loops in a Lorentzian context–but it didn’t prove anything to him. Oh, you can imagine how discouraged I was! I wrote an article for Physical Review Letters, but they were far nastier, and as you can imagine, that’s when my science education really began.

But I want to now to present the special relativity connection to unitary twist theory. It still feels strongly compelling to me and has, even if the theory is forever confined to the dustbin of bad ideas in history, strongly developed my instinct of what a Lorentzian geometry means to our existence.

The geometry connection of unitary twist field theory to special relativity is simple–any closed loop representation of a particle in a Lorentzian systen (ie, a geometry that observes time dilation according to the Lorentz transforms) will geometrically derive the dilation factor beta sqrt(1 – v^2/c^2). All you have to do to make this work is to assume that the loop represention of a particle consists of a twist that is propagating around the loop at speed c, and the “clock” of this particle is regulated by the time it takes to go around the loop. While this generalizes to any topological closed system of loops, knots, and links (you can see why Dr. Baez’s book interested me), let’s just examine the simple ring case. A stationary observer looking at this particle moving at some speed v will not see a ring, but rather a spiral path such that the length of a complete cycle of the spiral will unroll to a right triangle. The hypotenuse of the triangle by the Pythagorean theorem will be proportionate to the square root of v^2 + c^2, and a little simple math will show that the time to complete the cycle will dilate by the beta value defined above.

When I suddenly realized that this would *also* be true in the frame of reference of the particle observing the particles of the original observer, a light came on and I began to work out a bunch of other special relativity connections to the geometry of the unitary twist theory. I was able to prove that the dilation was the same regardless of the spatial orientation of the ring, and that it didn’t matter the shape or topology of the ring. I saw why linear twists (photons) would act differently and that rest mass would emerge from closed loops but not from linear twists. I went even as far as deriving why there has to be a speed of light limit in loops, and was able to derive the Heisenberg uncertainty for location and momentum. I even saw a way that the loop geometry would express a gravitational effect due to acceleration effects on the loop–there will be a slight resistance due to loop deformation as it is accelerated that should translate to inertia.

You can imagine my thinking that I had found a lodestone, a rich vein of ideas of how things might work! But as I tried to share my excitement, I very quickly learned what a dirty word speculation is. Eventually, I gave up trying to win a Nobel (don’t we all eventually do that, and perhaps that’s really the point when we grow up!). Now I just chug away, and if it gives somebody else some good ideas, then science has been done. That’s good enough for me now.

Agemoz

Nope: Precursor Field With a Background State Has to be Discontinuous

December 15, 2016

In the last post, I had come to the conclusion that the proposed R3 + I precursor field that would give rise to the particle zoo and EM and other fields could have twists and not have a discontinuity. This posed a problem, however, since quantization of a unitary twist field depends on the twist not being able to dissipate–that the discontinuity provides a “lock” that ensures particle stability over time. Further study has revealed that the extra I dimension does NOT topologically enable a continuous field that could contain twists.

The proof is simple. If the two ends of the twist are bound to the background state, but there is a field twist in between, it must be possible to create some other path connected to the endpoints that does not have a twist, since the background state must completely surround the twist path–see the diagram below. But this is impossible, because in a continuous system it must be topologically possible to move the paths close to each other such that an epsilon volume contains both paths yet has no discontinuities. Since this field is unitary and orientable (I like to use the car seat cover analogy, which is a plane of twistable balls for infinitesimal field elements), there is no “zero” magnitude possible. Somewhere in the epsilon volume there must be a region where the field orientations show a cut analogous to a contour integral cut.

It doesn’t matter how many dimensions the field has, if I’ve thought this through correctly, twists always require a discontinuity in a unitary orientable vector field.

This is a relief in most ways–otherwise this whole scheme falls apart if twists can dissipate. The only way a twist can unravel is in a collision with another twist of the opposite spin or some other similar geometrical construct.

Agemoz

twist_discontinuity_p1

Precursor Field Does Not Have to be Discontinuous

December 3, 2016

In trying to ferret out the properties of a precursor field that would give rise to the particle zoo and EM fields and so on, I had been working out just what this field would look like if it could form a loop. I have so far determined that it would have to reside in a orientable, unitary R3 + I vector field, the same dimensionality as the quantum oscillator field, and that to achieve E=hv quantization, quanta would take the form of twists in a background state pointing in the I direction. I figured out that a twist would curve in R3 if it formed a loop around a central background state region, because regardless of the loop topology in R3, it would always pass through a field orientation tilt toward the central I background region.

Up to now, the concept seemed to be workable, but I always have struggled with the field twist concept. I knew that in R3, you cannot have a field twist without a field discontinuity along the twist axis, which really caused me to doubt the veracity of the unitary twist theory. I know of no instance in the real universe where there’s a true discontinuity–even in black holes. To have our existence form from particles made of twists and field discontinuities has always seemed unlikely to the extreme–I have several times nearly abandoned this work because non-analytic fields seemed non-intuitive, non-differentiable, and non-geometrical.

However, when I tried to detail the specific mathematical possibilities for describing a curved twist in the R3 + I field, I discovered something quite surprising. Every mathematician probably knew this already–but when vector fields are described in four dimensions (R3 + I), axial twists can form in three of the four dimensions and not cause a discontinuity. The I orientation gives the field surrounding the twist an extra degree of freedom that removes the necessity for a discontinuity.

However, this does cause a different problem with the unitary twist theory. We all know that trying to form a soliton out of photons (an EM closed loop solution) is impossible because nothing can curve a photon into a ring. A big problem with trying to describe quantized photons out of EM waves is the dissipation problem, why doesn’t a quantized photon just radiate into nothing, thus losing the apparent quantization and conservation of energy? Currently, Standard Model physics doesn’t really provide an answer to that, but in unitary twist field theory work, I had determined that the discontinuities in a precursor field had acted as a lock that prevents unraveling of the particle, and thus may be necessary for particle stability. You can’t unravel a quantized twist in R3 (causing a particle loop or linear twist to disappear) because you would have to somehow resolve the discontinuity to the background state–and that definitely can’t be done in R3. But in R3 + I, there is no discontinuity required, and thus I think any twist configuration could disappear, thus potentially destroying the energy present in the particle.

So–which is it? We need R3 plus I to achieve quantization and closed loop twists–but R3 + I means we don’t have to have discontinuities–a far more realistic and likely representation of our universe via a unitary vector field, but with the disadvantage that what now enforces quantization? Are there solutions in R3 + I that still depend on a discontinuity for stability and conservation of energy?

Looks like more study and thinking is needed.

I’ll bet there’s a few scientists out there wondering if I could achieve something a lot more significant if I’d put all this time and energy into something worthwhile!

Agemoz

Precursor Field Curving Twists

November 18, 2016

I think I see the geometry of how the twists could form closed quantized loops. If there is a geometrical explanation for the particle zoo, I think this model would be a viable candidate. It has a huge advantage over all the geometric attempts I see so far, all of which have been shot down because the experimental evidence says subatomic particles have no size–collision angles suggest zero size or very tiny, yet all previous geometrical solutions have a Compton radius. This model has the ring in the R-I plane, meaning that collisions would have to hit a one dimensional line, thus appearing to have zero radius.

I have to wonder though, am I just spitting in the wind. No serious physicist would entertain primitive models like this, it’s like the old atom orbital drawings of the 60s before the quantum concept of orbital clouds really took hold. I had one physicist tell me that my geometric efforts faded out in the early 1900s as the Schrodinger view and wave functions and probability distributions really took over. Geometry lost favor as too-classical thinking.

Yet I really struggle with this. Geometry at this level implies logical thinking even if it accompanies a probabilistic theory (quantum theory). If we abandon geometry to explain the particle zoo, are we not just admitting that God created everything? Really, saying geometry cannot drive the formation of particles is like saying some intellect put them there. The reason I persist with a geometrical model is because I just don’t believe this universe was intentionally created, instead, I think it spontaneously formed from nothing. It’s very much one of the few true either-or questions–creator or spontaneous formation. If there’s a creator, I’m wasting my time since the particles are intentionally formed with a basis I cannot see–but that approach has the “what created the creator” paradox. I strongly believe that the only possible valid self-consistent solution is spontaneous creation, and that requires a logical (geometrical, in some way) explanation for the formation of particles. That is why I persist with these silly primitive efforts–with what I know, a logical derivable explanation has to be there and I’m using all my thinking efforts to try to find it.

Anyway, I think I figured out how unitary fields could produce rings from curving twists. The picture below is really tough to draw, because the arrows draw propagation direction, not twist orientation for a given point. But what I realized is that when the background state is constant, a twist will propagate linearly. However, if the background state has some rotation, trying to rotate normal to that rotation actually induces a rotation that has its maximum twist in an offset, or curved, direction. Perhaps if you imagine a field of dominoes pointing straight up, pushing one domino will cause a linear path of fallen dominoes. But if all the dominoes are slightly tilted normal to the direction of propagation, the fallen domino path will veer away from the linear path. This means that you should be able to form a twist ring if the twist line of the ring lies in the Ry-I plane, but there is a rotation in the Rx direction at the center. More complex geometries can easily form from other closed loop structures when the means for twist curvature is brought into the model.

So far, in the quest for a geometrical explanation of the particle zoo, this is what I think has to happen:
a: R3 + I
b: restoring connection to I to enable twist quantization
c: neighboring connection to propagate the twist
d: twist propagation can be altered when passing through an already tilted twist region, where this twist region is normal to the twist curvature
e: whole bunch of other issues on causality/group wave/etc etc discussed in previous posts.

I fully admit my efforts to explain the particle zoo may be primitive and too much like old 1900s classical thinking. I am thinking that twists to a background direction are the only geometrical way quantization of the particle zoo energies can be achieved. Whether that is right or wrong, I am resolute in thinking that there has to be a logical and geometrical basis for the zoo. The current searching for more particles at CERN so far doesn’t seem to have shed light on this basis, and assuming that particles just are what they are sounds like either giving up on humanity’s question for understanding or admitting they were intentionally created by something–but then what created that something? That line of thinking just can’t work. There’s just got to be a way to explain what we observe.

Agemoz
central-twist-induced-curve

String Theory vs Twist Theory in QFT

November 11, 2016

I’ve worked for some time now on a twist field theory that supposedly would provide a description of how quantized particles emerge, and have been working out the required constraints for the field. For example, it’s very clear that this precursor field cannot be some variation of an EM field like DeBroglie and others have proposed. In order for quantization to occur, I’ve determined that the field cannot have magnitude, it is a unitary R3 + I vector field with a preferred orientation to the I dimension, thus allowing geometrical quantization and special relativity behavior (see previous posts for more details). Particles arise when the twist forms a ring or other closed loop structure. I’ve been attempting to work out enough details to make possible an analytic solution and/or set up some kind of a computer model to see if the quantized particles in the model can somehow represent the particle zoo of reality. As I tried to work out how the field elements would interact with each other, I started to see a convergence of this twist field idea with quantum field theory, the field components would interact in a summation of all possible paths that can be computed using Feynman path integrals. If it were true, I think the twist field theory would add geometrical details to quantum field theory, providing a more detailed foundation for quantum physics.

Quantum field theory assumes the emergence of particles from the vacuum, provided that various conservation properties are observed. All interactions with other particles or with EM (or other) fields take place using specific exchange particles. Quantizing the field in QFT works because only specific particles can operate as exchange bosons or emerge from the background vacuum, but QFT does not provide a means to describe why the particles have the mass that we observe. QFT uses quantized particles to derive why interactions are quantized, but doesn’t answer why those particles are quantized. I worked on this twist field theory because I thought maybe I could go a step further and find out what quantizes the particles of QFT.

At this point, I’ve determined that the fundamental foundation of my theory could be described simply as saying that all of the particles in QFT are twists, some closed loop and some linear. So what? You say potay-to, I say potah-to? Particle, twist, what’s the difference? No, it’s more than that. Particles have no structure that explains why one particle acts differently than another, or why particles only exist with specific intrinsic energies. As I have described in many of my previous posts, describing the QFT component particles as geometrical loops of twists can constrain the possible loop energies and enable only certain particles to emerge. It is a model for QFT particles that I think will provide a path for deepening our understanding of quantum behavior better than just assuming various quantized particles.

I realized that my thinking so far is that the unitary twist field really is starting to look like a string theory. String theory in all its forms has been developed to try to integrate gravity into QFT, but I think that’s a mistake. We don’t know enough to do that–the gravity effect is positively miniscule. It is not a second order or even a tenth order correction to QFT. We have too many questions, intermediate “turtles” to discover, so to speak, before we can combine those two theories. As a result, the math for current string theory is kind of scattergun, with no reasonable predictions anywhere. Is it 10 dimensions, 20, 11, or what? Are strings tubes, or one dimensional? Nobody knows, there’s just no experimental data or analysis that would constrain the existing string theories out there. As a result, I don’t think existing string theory math is going to be too helpful because it is trying to find a absurdly tiny, tiny sub-perturbation on quantum field math. Let’s find out what quantizes particles before going there.

The unitary twist field theory does look a little like strings given the geometry of axial precursor field twists. The question of what quantizes the QFT particles is definitely a first order effect, and that’s why I think the unitary twist field theory is worth pursuing first before trying to bring in gravity. It’s adding quantizing geometry to particles, thus permitting root cause analysis of why we have our particle zoo and the resulting QFT behavior.

I really wish I could find a way to see if there’s any truth to this idea in my lifetime…

Agemoz

Precursor Field Continuing Work

October 28, 2016

I suspect that groundbreaking work in any field which involves the old saw of 5% inspiration, 95% sweat applies to what I’m doing with the precursor field. It may be a rather big chunk of chutzpah to call my work “groundbreaking”, but it’s definitely creative, and is definitely in the “tedious work out the details” phase. To summarize what I am describing here, I have invented an area of study which I’ve encapsulated with a concept name of the “precursor field”. As discussed in many previous posts, the one-line description of this area of study is “If a single field could bring forth the particle zoo, what would it look like”. For the last bunch of posts, I’ve been working out an acceptable list of assumptions and constraints for this field. Not very exciting, but I’m trying to be thorough and make reasonable conclusions as I work step by step on this. Ultimately I want to derive the math for this field and create a sim or analysis to verify that stable particles resembling the particle zoo will emerge.

Up to now, as discussed in many previous posts, I’ve been able to show that the precursor field cannot be derived from an EM field like DeBroglie and others have done, they failed to come up with a workable solution to enable emergence of stable quantized particles. Thus, there has to be a precursor field from which EM field behavior emerges. I’ve been able to determine that the dimensions of this precursor field has to encompass R3 + I as well as the time dimension. The field must be orientable without magnitude variation, so a thinking model of this field would be a volume of tiny weighted balls. Quantum mechanics theory, in particular, non-causal interference and entanglement, force the precursor field to Fourier decompose to waves that have infinite propagation speed, but particles other than massless bosons must form as group wave clusters. These will move causally because motion results from the rate of phase change of the group wave components, and this rate of phase change is limited (for as yet unknown reasons). The precursor field must allow emergence of quantization of energy by having two connections between field elements–a restoring force to I, and a neighborhood connection to R3. The restoring force causes quantized particles to emerge by only allowing full rotation twists of the precursor field. The neighborhood force would enable group wave confinement to a ring or other topological structures confined to a finite volume, thus causing inertial mass to emerge from a twist in the field.

I’ve left out other derived details, but that should give you a sense of the precursor field analysis I’ve been doing. Lately, I’ve come up with more conclusions. As I said at the beginning–this is kind of tedious at this point, but needs to be thought through as carefully as possible, otherwise the foundation of this attempt to find the precursor field structure could veer wildly off course. I’m reminded of doing a difficult Sudoku puzzle–one minor mistake or assumption early on in the derivation of a solution means that a lot of pointless work will follow that can only, near the end of the puzzle derivation, result in a visible trainwreck. I would really like for my efforts to actually point somewhere in the right direction, so you will see me try to be painstakingly thorough. Even then, I suspect I could be wildly wrong, but it won’t be because I rushed through and took conceptual shortcuts.

OK, let me now point out some new conclusions I’ve recently uncovered about the precursor field.

An essential question is whether the precursor field is continuous or is somehow composed of finite chunks. I realized that the field itself cannot exist in any quantized form–it must be continuous in R3 + I. Thus my previously stated model of a volume of balls is not really accurate unless you assume the balls are infinitely small. I make this conclusion because it appears clear that any field quantization would show up in some variation of a Michelson-Morley experiment, there would be evidence of an ether–and we have no such evidence. I thought maybe the field quantization could be chaotic, e.g, elements are random sized–but then I think the conservation of momentum and charge could not strictly hold throughout the universe. So, the precursor field is continuous, not quantum–thus making the argument that the universe is a computer simulation improbable.

The necessity for twists to allow quantized stable particle formation from a continuous field means that this field is not necessarily differentiable (that is, adjacent infinitesimals may have a finite, non infinitesimal difference in orientation). Quantization has to emerge from the restoring force, but cannot pre-exist in the precursor field.

I realized that the emergence of twists within a volume (necessary to form stable solitons) puts a number of constraints on the connecting force (one of the two connections necessary for the precursor field). First, the connection cannot be physical, otherwise twists cannot exist in this field–twists require a discontinuity region along the axis of the twist. Thus, the connection force must work by momentum transfer rather than direct connection. Another way to put it is there cannot be “rubber bands” between each infinitesimal element. Momentum transfer doesn’t prohibit discontinuities in field orientation, but a physical direct connection would.

Secondly, the neighborhood connection can only work on adjacent infinitesimals. This is different than an EM field, where a single point charge affects both neighborhood and distant regions. EM forces pass through adjacent elements to affect distant elements, but the precursor neighborhood force can’t do that without presupposing another independent field. This discovery was a very nice one because it means the field math is going to be a whole lot easier to work with.

Third, the precursor field must be able to break up a momentum transfer resulting from a neighborhood force. It must be possible that if the action of one infinitesimal induces a neighborhood connection, it must be possible to induce this connection force to more than one neighboring infinitesimal, otherwise the only possible group wave construction would be linear twists (photons). A receiving infinitesimal could get partial twist momenta from more than one adjacent infinitesimal, thus the propagation path of a twist could be influenced by multiple neighbors in such a way to induce a non-linear path such as a ring.

Lastly (for now, anyway!) the restoring force means that sums of momentum transfers must be quantized when applied to another field infinitesimal. I realized it’s possible that a given infinitesimal could get a momentum transfer sum greater than that induced by a single twist. In order for particle energy conservation to work, among many other things, there must be a mechanism for chopping off excess momentum transfer and the restoring connection force provides this. The excess momentum transfer disappears if the sum is not enough to induce a second rotation. I can see from simple geometry that the result will always be a single path, it’s not possible for two twists to suddenly emerge from one. I think if you study this, you will realize this is true, but I can’t do that subject justice here right now. I’ll think about a clear way to describe this in a following post, especially since this work will set the groundwork for the field math.

I’ve come up with more, but this is a good point to stop here for now. You can go back to more interesting silly cat videos now 🙂

Agemoz

Precursor Field and Renormalization

September 25, 2016

As I work out the details of the Precursor Field, I need to explain how this proposal deals with renormalization issues. The Precursor Field attempts to explain why we have a particle zoo, quantization, and quantum entanglement–and has to allow the emergence of force exchange particles for at least the EM and Strong forces. Previous efforts by physics theorists attempted to extend the EM field properties so that quantization could be derived, but these efforts have all failed. It’s my belief that there has to be an underlying “precursor” field that allows stable quantized particles and force exchange particles to form. I’ve been working out what properties this field must have, and one thing has been strikingly apparent–starting with an EM field and extending it cannot possibly work for a whole host of reasons.

As mentioned extensively in previous posts, the fundamental geometry of this precursor field is an orientable 3D+I dimensional vector field. It cannot have magnitude (otherwise E-hv quantization would not be constrained), must allow vector twists (and thus is not finite differentiable ie, not continuous) and must have a preferred orientation in the I direction to force an integral number of twists. Previous posts on this site eke out more properties this field must have, but lately I’ve been focusing on the renormalization problem. There are two connections at play in the proposed precursor field–the twist quantization force, which provides a low-energy state in the I direction, and a twist propagation force. The latter is an element neighborhood force, that is, is the means by which an element interacts with its neighbors.

The problem with any neighborhood force is that any linear interaction will dissipate in strength in a 3D space according to the central force model, and thus mathematically is proportionate to 1/r^2. Any such force will run into infinities that make finding realistic solutions impossible. Traditional quantum field theory works around this successfully by invoking cancelling infinities, renormalizing the computation into a finite range of solutions. This works, but the precursor field has to address infinities more directly. Or perhaps I should say it should. The cool thing is that I discovered it does. Not only that, but the precursor field provides a clean path from the quantized unitary twist model to the emergence of magnetic and electrostatic forces in quantum field theory. This discovery came from the fact that closed loop twists have two sources of twists.

The historical efforts to extend and quantize the EM field is exemplified by the DeBroglie EM wave around a closed loop. The problem here, of course, is that photons (the EM wave component) don’t bend like this, nor does this approach provide a quantization of particle mass. Such a model, if it could produce a particle with a confined momentum of an EM wave, would have no constraint on making a slightly smaller particle with a slightly higher EM wave frequency. Worse, the force that bends the wave would have the renormalization problem–the electrostatic balancing force is a central force proportionate function, and thus has a pole (infinity) at zero radius. This is the final nail in the coffin of trying to use an EM field to form a basis for quantizing particles.
The unitary twist field doesn’t have this problem, because the forces that bend the twist are not central force proportionate. The best way to describe the twist neighborhood connection is as a magnetic flux model. In addition, there are *two* twists in a unitary twist field particle (closed loop of various topologies). There is the quantized vector twist from I to R3 and back again to I, that is, a twist about the propagation axis. And, there is also the twist that results from propagating around the closed loop. Similar to magnetic fields, the curving (normal) force on a twist element is proportionate to the cross-product of the flux change with the twist element propagation direction. My basic calculations show there is a class of closed loop topologies where the two forces cancel each other along a LaGrangian minimum energy path, thus providing a quantized set of solutions (particles). It should be obvious that neither connection force is central force dependent and thus the  renormalization problem disappears.  There should be a large or infinite number of solutions, and the current quest is to see if these solutions match or resemble the particle zoo.

In summary, this latest work shows that the behavior of the precursor field has to be such that central force connections cannot be allowed (and thus forever eliminates the possibility that an EM field can be extended to enable quantization). It also shows how true quantization of particle mass can be achieved, and finally shows how an electrostatic field must emerge given that central force interactions cannot exist at the precursor field level. EM fields must emerge as the result of force exchange particles because it cannot emerge from any central force field, thus validating quantum field theory from a geometrical basis!

I thought that was pretty cool… But I must confess to a certain angst.

Is anybody going to care about these ideas? I know the answer is no. I imagine Feynman (or worse, Bohr) looking over my shoulder and (perhaps kindly or not) saying what the heck are you wasting your time for. Go study real physics that produces real results. This speculative crap isn’t worth the time of day. Why do I bother! I know that extraordinary claims require extraordinary proof–extraordinary in either experimental verification or deductive proof. Neither option, as far as I have been able to think, is within my reach. But until I can produce something, these ideas amount to absolutely nothing.

I suppose one positive outcome is personal–I’ve learned a lot and entertained myself plus perhaps a few readers on the possibility of how things might work. I’ve passed time contemplating the universe, which I think is unarguably a better way to spend a human life than watching the latest garbage on youtube or TV. Maybe I’ve spurred one person out there to think about our existence in a different way.

Or, perhaps more pessimistically, I’m just a crackpot. The lesson of the Man of La Mancha is about truly understanding just who and what you are, and reaching for the impossible star can doing something important to your character. I like the image that perhaps I’m an explorer of human existence, even if perhaps not a very good one–and willing to share my adventures with any of you who choose to follow along.

Agemoz