Posts Tagged ‘quantum theory’

Renormalization

June 25, 2017

I’m working on the math for the Unitary Twist Field Theory sim. The first sim to run is the easiest I know of, the electron/photon interaction, and if the theory doesn’t yield some reasonably good results, the theory is dead, there’s no point in going further. If that happens, hopefully there will be an indication of how to modify it to make it work, but this will be a defining moment for my work. Just recently, something quite astonishing came out of this work to find the equations of motion for the precursor field of this theory.

In the process of working out the force computations, I’ve been able to winnow down the range of possible equations that will rule the components of the interaction. Note first that the sim I am doing is discrete while the theory is continuous, simply to allow a practical implementation of a computer sim. I can add as many nodes as I want to improve accuracy, but the discrete implementation will be a limitation of the approach I am taking. In addition, forces can be local neighborhood only since according to the theory there is only one element to the precursor field, you can’t somehow influence elements through or outside the immediate neighborhood of an element. The field is also incompressible–you cant somehow squeeze more twist elements into a volume.

To express a twist with all of the required degrees of freedom in R3 + I, I use the e^i/2Pi(theta t – k x) factor. Forces on these twists must be normal to the direction of propagation–you can’t somehow speed it up or slow it down. Forces cannot add magnitude to the field–in order to enforce particle quantization (for example E=hv) the theory posits that each element is direction only, and has no magnitude. I use the car-seat cover analogy–these look like a plane of wooden balls, which can rotate (presumably to massage or relieve tension on your back while driving), but there is no magnitude component. The theory posits that all particles of the particle zoo emerge from conservative variations and changes in the direction of twist elements. To enforce rotation quantization, it is necessary that there be a background rotation state and a corresponding restoring force for each element.

In the process of working out the neighborhood force for each field element, I made an interesting, if not astonishing, discovery. At first, it seemed necessary that the neighborhood force would have a 1/r^n component. Since my sim is discrete, I will have to add a approximation factor to account for distances to the nearest neighbor element. Electrostatic fields, for example, apply force according to 1/r^2. This introduces a problem as the distance between elements approaches zero, the forces involved go to infinity. This is particularly an issue in QFT because the Standard Model assumes a point electron and QFT computations require assessing forces in the immediate neighborhood of the point. To make this work, to remove the infinities, renormalization is used to cancel out math terms that approach infinity. Feynman, for example, is documented to have stated that he didn’t like this device, but it generated correct verifiable results so he accepted it.

I realized that there can be no central (1/r^n) forces in the unitary twist field (this is the nail in the coffin for trying to use an EM field to form soliton particles. You can’t start with an EM field to generate gravitational effects–a common newbie thought partly due to the central force similarity, and you can’t use an EM field to form quantized particles either). Central force fields always result from any granular quantized system of particles issued from a point source into Rn, so assuming forces have a 1/r^n factor just can’t work. The granular components don’t dissipate, after all, where does the dissipated element go? In twist theory, you can’t topologically make a twist vanish. Thus the approximation factor in the sim must be unitary even if the field element distance varies.

Then a powerful insight hit me–if you can’t have a precursor field force dependent on 1/r^n, you should not need to renormalize. I now make the bold assertion that if you need to renormalize in a quantized system, something is wrong with your model. And, of course, then I stared at what that means for QFT, in particular the assumption that the electron is a point particle. There’s a host of problems with that anyway–in the last post I mentioned the paradox of an electron ever capturing a photon if it is a point with essentially zero radius. Here, the infinite energies near the point electron or any charged point particle have to be managed by renormalization–so I make the outrageous claim that the Standard Model got this part wrong. Remember though–this blog is not about trying to convince you (the mark of a crackpot) but just to document what I am doing and thinking. I don’t expect to convince anyone of this, especially given the magnitude of this discovery. I seriously questioned it myself and will continue to do so.

The Unitary Twist Field theory does not have this problem because it assumes the electron is a closed loop twist with no infinite energies anywhere.

Agemoz

Preparing First Collision Sim

June 22, 2017

I’ve been working fairly consistently on the simulation environment for the unitary twist field theory. I’m getting ready to set up a photon/electron collision, modeled by the interaction of a linear twist with a twist around a loop. The twist is represented by e^I(t theta – k x), yes, the same expression that is used for quantum wave functions (I’ve often wondered if we’ve misinterpreted that term as a wave when in fact the math for a twist has been in front of our noses all along).

This is a great first choice for a collision sim because in my mind there’s always been a mystery about photon/particle interactions. If the electron is really a point particle as the Standard Model posits, how can a photon that is many orders of magnitude larger always interact with one and only one electron, even if there are a gazillion electrons within one wavelength of the photon? The standard answer is that I’m asking the wrong or invalid question–a classical question to a quantum situation. To which I think, maybe, but quantum mechanics does not answer it, and I just get this sense that refusing to pursue questions like this denies progress in understanding how things work.

In twist theory there appears to be an elegant geometrical answer that I’m pretty sure the simulation will show–counting my chickens before they are in my hand, to be sure–the downfall of way too many bright-eyed physics enthusiasts. But as I’ve worked out before, the precursor twist field is an incompressible and non-overlapping twist field. If the electron is a closed loop of twists, and within the loop the twists revert back to the I direction (see previous posts for a little more detailed description), then any linear twist propagating through the loop will add a delta twist to some point in the interior of the loop. Since you cannot somehow overlap twists (there’s only one field here, you can’t somehow slide twists through each other. Each point has a specific twist value, unlike EM fields where you linearly combine distinct fields). As a result, the twist of the loop can unwind the linear twist going through it, causing the photon to disappear and the close loop will pick up the resulting linear twist momentum. This isn’t really a great explanation, so here’s a picture of what I think will happen. The key is the fact that the precursor field has one twist value for every point in R3. It’s an incompressible and unitary field–you cant have two twist values (or a linear combination–it’s unitary magnitude at every point!) at a given point, so the photon twists have to affect the twist infrastructure of the loop if it passes through the loop. It really will act a lot like a residue inside a surface, where doing a contour integral will exactly reflect the number of residues inside.

At least that’s what I think will happen–stay tuned. You can see why I chose this interaction as the first sim setup to try.

Agemoz

Sim Infrastructure in Place

June 2, 2017

An exciting day! I found a better working environment for sims, and very quickly was able to get some elementary particle sims up and running. I like to think I finally actually did something noteworthy by creating an easy to use infrastructure that allows me to investigate and test mathematical concepts such as the unitary twist field theory that are far too difficult to solve analytically, even with simplifying assumptions. If I had chosen physics as a career path, one major area for contribution is setting up new environments or mathematical tools that allow others to build and test theories.
I have been writing a C program but it was taking forever and I was bogging down on the UI and result display. So I took a look at the Unity gaming SDK and realized this might be a perfect way to get past that and quickly into theory implementation. It more than met my expectations!
CERN has nothing on me! Next up are Petavolt collisions! Well, not really, first I have a lot of model generation to do to truly represent the precursor field theory I’ve detailed in previous posts. In addition, the display is very coarse and needs to be refined–the cubes are nodes in discretized points on the twist.  I want to get fancier but for now it’s pretty amazing to watch as the loop twists and turns.  The funny and amazing thing is, though, I really could do a collision sim in a few hours. This infrastructure makes it very easy to set up interaction math and boundary conditions. Maybe my theory is hogwash, but this infrastructure isn’t–could I have finally made a usable contribution to science? If any of you are interested in this, send me a comment or email and maybe I’ll detail what I’m doing here.

Special Relativity and Unitary Twist Field Theory–Addendum

February 2, 2017

If you read my last post on the special relativity connection to this unitary twist field idea, you would be forgiven for thinking I’m still stuck in classical physics thinking, a common complaint for beginning physics students. But the importance of this revelation is more than that because it applies to *any* curve in R3–in particular, it shows that the composite paths of QFT (path integral paradigm) will behave this way as long as they are closed loops, and so will wave functions such as found in Schrodinger’s wave equation. In the latter case, even a electron model as a cloud will geometrically derive the Lorentz transforms. I believe that what this simple discovery does show is that anything that obeys special relativity must be a closed loop, even the supposedly point particle electron. Add in the quantized mass/charge of every single electron, and now you have the closed loop field twists to a background state of the unitary field twist theory that attempts to show how the particle zoo could emerge.

Agemoz

Quantum State Superposition in the Precursor Field

January 1, 2017

I’ve been continuing to work on what a field would have to look like if it were the underlying mechanism for the particle zoo and force fields. One thing I haven’t discussed that will be noticed instantly by anyone who studies physics–this precursor field must allow quantum state superposition. I’ve so far posted a geometrical set of constraints, but I’ve always had an awareness that the model is incomplete–or won’t work at all–if I can’t provide some means for state superposition.

The trouble with inventing a theory like this is that the job is truly humongous. The number of details that have to be verified as correct is really beyond the reach of one person or even a team of people, so I’ve had to trudge on knowing that this whole thing will be laughed off in seconds by experienced theoreticians who spot a missing or wrong claim. This is definitely one of them, if I don’t provide a believable mechanism for quantum state superposition, nobody will bother to look.

So–I’ve spent some time thinking on this. I actually have enough worked out that I want to try a sim of the model, but then I thought–no, make sure quantum states can work with the model. Otherwise the sim will be a waste of time and probably not really even interesting. Probably the easiest and simplest quantum state superposition to think about is electron spin, which I’m going to take the liberty of modelling with a twist ring. There are two spin parameters in a twist ring, one of which is degenerate by rotation(*). To isolate the true degrees of freedom in a gauge invariant system, I will set the ring rotation direction as clockwise, for example, and then see just one degree of freedom in the axial twist direction along the rotation direction–it can be either clockwise or counterclockwise. I will call this the spin of the particle, either up or down.

Now, to specify a quantum state superposition, the particle spin can be either up or down or a linear combination of spin-up and spin-down. Does the unitary twist field theory precursor field allow this? I believe it is easy to say yes. Treat the loop as a transmission line with a discontinuity sheath surrounding the twist. The twist itself is a Fourier construction of standing waves that can encapsulate such a linear composition of the up and down spin. If the particle encounters a spin detector, an operator acts on the linear composition to filter the wave composition and resolve the spin state.

There’s my hand-wavy analysis, no proof by any stretch of the imagination. That is a chore that will have to wait. It looks viable to me, but I have so many other alligators in this swamp that this will have to do for now.

Agemoz

*Note that it’s only degenerate in R3 for purposes of this example. In reality, the R3 + I background state will be different for the two loop rotations, thus providing the required degrees of freedom for both spin and the particle/antiparticle duality.

Precursor Field Forces

December 18, 2016

It looks clear now (see previous posts) that the precursor field (my underlying field proposal that is hypothesized to give rise to the particle zoo and EM and other fields) has to have a discontinuity to enable twists. This is great for quantization as mentioned in the previous post, but is really ugly for the math describing the field. Could nature really work this way? I’m dubious, but all of my analysis seems to show this is the only way, I’ve only gotten here because I have seen no other paths that appear to work.

For example, it’s obvious to everyone that an EM field can’t be the basis for quantization or solitons–lots of historical efforts that many have looked at and ruled out. Twists in a background state is a geometrical definition of quantization. Lattice and computer sim schemes are ruled out (in my mind, anyway) because I think there should be observable ether-like consequences. Adding an I direction to the R3 of our existence is necessary since twists in R3 could not provide the symmetries required for guage invariance and exchange particle combinations. The I dimension, which is merely an element pointing direction that does not lie in a physical real axis of R3, enables twist quantization, and unlike photon ring theories such as DeBroglie’s, can enable twist trajectory curvature–a necessity to allow closed loop solutions that confine particles to a finite volume. There are many more necessary constraints on this precursor field, but the most problematic is the need for field discontinuities. Any twist in a unitary orientable vector field has to be surrounded by a sheath where the twist disconnects from the background state pointing in the I direction.

Requiring discontinuities needed for enabling field twists is an ugly complication. We know already that any quantizing field theory underlying particle creation/annihilation cannot be linear since dissipation destroys particle stability–solitons cannot be formed. Almost by definition this means that the field has to have discontinuities, but mathematically describing such a field becomes very problematic. Obviously, such a field will not be differentiable since differentiability, at least finite differentiability, implies linearity.

As I’ve mentioned in previous posts, the precursor field has two connections that act like forces. From these connections arise linear and curving twists, exchange bosons of fields, and so on. The first force acts only on a field element, and provides a restoring force to the background state. The second, neighboring affect force, provides an influence on immediately adjacent neighboring elements of the precursor field. The first force should not be conceptually complex–it just means that, barring any other effect, a field element vector will return to the background state.

The second force is more complex. I see at least two options how this force might work. It should be obvious this force cannot be proportionate to the dimensional rate of change of rotation because discontinuities would make this force infinite. In fact, to keep a particle from dissociating, there must be an adhesion to nearby elements–but NOT across a discontinuity. Otherwise, the force due to the discontinuity would be far greater than the force holding the elements of the twists, where each end is bound to the background state (or to the 0 and 2Pi phase rotation connection of the closed loop twist). If that happens the forces across the discontinuity would be far greater that the force tying down the twist ends to the background state and our particle, whether linear or closed loop, would immediately be shredded into nothing.

The other possibility for the second force is to make it only proportionate to the timewise rate of change of adjacent elements (sort of like induction in magnetic fields), but again, the discontinuity sheath would bring in potential infinities.  Right now this approach does not show promise at all for a bunch of reasons.

I think the only viable description of the neighborhood force would be an adhesion to nearby states who’s orientation is the same or very slightly different. That is, the angular delta from nearby elements causes a force to make that delta 0, but if there is a rip or tear then no force occurs). An important side question is whether the neighborhood connection is stronger than the restoring to I force. It’s not clear to me right now if it matters–I think field quantization works regardless of which is stronger.

This finally gives me enough description that I can mathematically encode it into a simulation. I realize that just about all of you will not accept a theory with this sort of discontinuity built into every single particle. Like you, I really am quite skeptical this is how things work. I hope you can see the logic of how I got here, the step-by-step thinking I’ve done, along with going back and seeing if I overlooked a different approach (eg, more dimensions, string theory, etc) that would be more palatable. But that hasn’t happened, I haven’t seen any other schemes that could work as well as what I have so far.

Agemoz

Precursor Field Does Not Have to be Discontinuous

December 3, 2016

In trying to ferret out the properties of a precursor field that would give rise to the particle zoo and EM fields and so on, I had been working out just what this field would look like if it could form a loop. I have so far determined that it would have to reside in a orientable, unitary R3 + I vector field, the same dimensionality as the quantum oscillator field, and that to achieve E=hv quantization, quanta would take the form of twists in a background state pointing in the I direction. I figured out that a twist would curve in R3 if it formed a loop around a central background state region, because regardless of the loop topology in R3, it would always pass through a field orientation tilt toward the central I background region.

Up to now, the concept seemed to be workable, but I always have struggled with the field twist concept. I knew that in R3, you cannot have a field twist without a field discontinuity along the twist axis, which really caused me to doubt the veracity of the unitary twist theory. I know of no instance in the real universe where there’s a true discontinuity–even in black holes. To have our existence form from particles made of twists and field discontinuities has always seemed unlikely to the extreme–I have several times nearly abandoned this work because non-analytic fields seemed non-intuitive, non-differentiable, and non-geometrical.

However, when I tried to detail the specific mathematical possibilities for describing a curved twist in the R3 + I field, I discovered something quite surprising. Every mathematician probably knew this already–but when vector fields are described in four dimensions (R3 + I), axial twists can form in three of the four dimensions and not cause a discontinuity. The I orientation gives the field surrounding the twist an extra degree of freedom that removes the necessity for a discontinuity.

However, this does cause a different problem with the unitary twist theory. We all know that trying to form a soliton out of photons (an EM closed loop solution) is impossible because nothing can curve a photon into a ring. A big problem with trying to describe quantized photons out of EM waves is the dissipation problem, why doesn’t a quantized photon just radiate into nothing, thus losing the apparent quantization and conservation of energy? Currently, Standard Model physics doesn’t really provide an answer to that, but in unitary twist field theory work, I had determined that the discontinuities in a precursor field had acted as a lock that prevents unraveling of the particle, and thus may be necessary for particle stability. You can’t unravel a quantized twist in R3 (causing a particle loop or linear twist to disappear) because you would have to somehow resolve the discontinuity to the background state–and that definitely can’t be done in R3. But in R3 + I, there is no discontinuity required, and thus I think any twist configuration could disappear, thus potentially destroying the energy present in the particle.

So–which is it? We need R3 plus I to achieve quantization and closed loop twists–but R3 + I means we don’t have to have discontinuities–a far more realistic and likely representation of our universe via a unitary vector field, but with the disadvantage that what now enforces quantization? Are there solutions in R3 + I that still depend on a discontinuity for stability and conservation of energy?

Looks like more study and thinking is needed.

I’ll bet there’s a few scientists out there wondering if I could achieve something a lot more significant if I’d put all this time and energy into something worthwhile!

Agemoz

Precursor Field Connection to Quantum Field Theory

November 8, 2016

I’ve done some pretty intense thinking about the precursor field that enables quantized particles to exist (see prior post for a summary of this thought process) via unitary field twists that tend to a background state direction. This field would have to have two types of connections that act like forces in conventional physics: a restoring force to the background direction, and a connecting force to neighborhood field elements. The first force is pretty simple to describe mathematically, although some questions remain about metastability and other issues that I’ll mention in a later post. The second force is the important one. My previous post described several properties for this connection, such as the requirement that the field connection can only affect immediate neighborhood field elements.

The subject that really got me thinking was specifically how one field element influences others. As I mentioned, the effect can’t pass through neighboring elements. It can’t be a physical connection, what I mean by that is you can’t model the connection with some sort of rubber band, otherwise twists could not be possible since twists require a field discontinuity along the twist axis. That means the connection has to act via a form of momentum transfer. An important basis for a field twist has to consist of an element rotation, since no magnitudes exist for field elements (this comes from E=hv quantization, see previous few posts). But just how would this rotation, or change in rotation speed, affect neighboring elements? Would it affect a region or neighborhood, or only one other element? And by how much–would the propagation axis get more of the rotation energy, if so, how much energy do other non-axial regions get, and if there are multiple twists, what is the combined effect? How do you ensure that twist energy is conserved? You can see that trying to describe the second force precisely opens up a huge can of worms

To conserve twist energy so the twist doesn’t dissipate or somehow get amplified in R3, I thought the only obvious possibility is that an element rotation or change of rotation speed would only affect one field element in the direction of propagation. But I realized that if this field is going to underlie the particle/field interactions described by quantum mechanics and quantum field theory, the energy of the twist has to spread to many adjacent field elements in order to describe, for example, quantum interference. I really struggled after realizing that–how is twist conservation going to be enforced if there is a distributed element rotation impact.

Then I had what might be called (chutzpah trigger warning coming 🙂 a breakthrough. I don’t have to figure that out. It’s already described in quantum theory by path integrals–the summation of all possible paths, most of which will cancel out. Quantum Field theory describes how particles interact with an EM field, for example, via the summation of all possible virtual and real particle paths via exchange bosons, for instance, photons. Since quantum field theory describes every interaction as a sum of all possible exchange bosons, and does it while conserving various interaction properties, all this stuff I’m working on could perhaps be simply described as replacing both real and virtual particles of quantum theory with field twists, partial or complete, that tend to rotate to the I dimension direction in R3 + I space (the same space described with the quantum oscillator model) of my twist theory hypothesis.

I now have to continue to process and think about this revelation–can all this thinking I’ve been doing be reduced to nothing more than a different way to think about the particles of quantum field theory? Do I add any value to quantum field theory by looking at it this way? Is there even remotely a possibility of coming up with an experiment to verify this idea?

Agemoz

Precursor Field Continuing Work

October 28, 2016

I suspect that groundbreaking work in any field which involves the old saw of 5% inspiration, 95% sweat applies to what I’m doing with the precursor field. It may be a rather big chunk of chutzpah to call my work “groundbreaking”, but it’s definitely creative, and is definitely in the “tedious work out the details” phase. To summarize what I am describing here, I have invented an area of study which I’ve encapsulated with a concept name of the “precursor field”. As discussed in many previous posts, the one-line description of this area of study is “If a single field could bring forth the particle zoo, what would it look like”. For the last bunch of posts, I’ve been working out an acceptable list of assumptions and constraints for this field. Not very exciting, but I’m trying to be thorough and make reasonable conclusions as I work step by step on this. Ultimately I want to derive the math for this field and create a sim or analysis to verify that stable particles resembling the particle zoo will emerge.

Up to now, as discussed in many previous posts, I’ve been able to show that the precursor field cannot be derived from an EM field like DeBroglie and others have done, they failed to come up with a workable solution to enable emergence of stable quantized particles. Thus, there has to be a precursor field from which EM field behavior emerges. I’ve been able to determine that the dimensions of this precursor field has to encompass R3 + I as well as the time dimension. The field must be orientable without magnitude variation, so a thinking model of this field would be a volume of tiny weighted balls. Quantum mechanics theory, in particular, non-causal interference and entanglement, force the precursor field to Fourier decompose to waves that have infinite propagation speed, but particles other than massless bosons must form as group wave clusters. These will move causally because motion results from the rate of phase change of the group wave components, and this rate of phase change is limited (for as yet unknown reasons). The precursor field must allow emergence of quantization of energy by having two connections between field elements–a restoring force to I, and a neighborhood connection to R3. The restoring force causes quantized particles to emerge by only allowing full rotation twists of the precursor field. The neighborhood force would enable group wave confinement to a ring or other topological structures confined to a finite volume, thus causing inertial mass to emerge from a twist in the field.

I’ve left out other derived details, but that should give you a sense of the precursor field analysis I’ve been doing. Lately, I’ve come up with more conclusions. As I said at the beginning–this is kind of tedious at this point, but needs to be thought through as carefully as possible, otherwise the foundation of this attempt to find the precursor field structure could veer wildly off course. I’m reminded of doing a difficult Sudoku puzzle–one minor mistake or assumption early on in the derivation of a solution means that a lot of pointless work will follow that can only, near the end of the puzzle derivation, result in a visible trainwreck. I would really like for my efforts to actually point somewhere in the right direction, so you will see me try to be painstakingly thorough. Even then, I suspect I could be wildly wrong, but it won’t be because I rushed through and took conceptual shortcuts.

OK, let me now point out some new conclusions I’ve recently uncovered about the precursor field.

An essential question is whether the precursor field is continuous or is somehow composed of finite chunks. I realized that the field itself cannot exist in any quantized form–it must be continuous in R3 + I. Thus my previously stated model of a volume of balls is not really accurate unless you assume the balls are infinitely small. I make this conclusion because it appears clear that any field quantization would show up in some variation of a Michelson-Morley experiment, there would be evidence of an ether–and we have no such evidence. I thought maybe the field quantization could be chaotic, e.g, elements are random sized–but then I think the conservation of momentum and charge could not strictly hold throughout the universe. So, the precursor field is continuous, not quantum–thus making the argument that the universe is a computer simulation improbable.

The necessity for twists to allow quantized stable particle formation from a continuous field means that this field is not necessarily differentiable (that is, adjacent infinitesimals may have a finite, non infinitesimal difference in orientation). Quantization has to emerge from the restoring force, but cannot pre-exist in the precursor field.

I realized that the emergence of twists within a volume (necessary to form stable solitons) puts a number of constraints on the connecting force (one of the two connections necessary for the precursor field). First, the connection cannot be physical, otherwise twists cannot exist in this field–twists require a discontinuity region along the axis of the twist. Thus, the connection force must work by momentum transfer rather than direct connection. Another way to put it is there cannot be “rubber bands” between each infinitesimal element. Momentum transfer doesn’t prohibit discontinuities in field orientation, but a physical direct connection would.

Secondly, the neighborhood connection can only work on adjacent infinitesimals. This is different than an EM field, where a single point charge affects both neighborhood and distant regions. EM forces pass through adjacent elements to affect distant elements, but the precursor neighborhood force can’t do that without presupposing another independent field. This discovery was a very nice one because it means the field math is going to be a whole lot easier to work with.

Third, the precursor field must be able to break up a momentum transfer resulting from a neighborhood force. It must be possible that if the action of one infinitesimal induces a neighborhood connection, it must be possible to induce this connection force to more than one neighboring infinitesimal, otherwise the only possible group wave construction would be linear twists (photons). A receiving infinitesimal could get partial twist momenta from more than one adjacent infinitesimal, thus the propagation path of a twist could be influenced by multiple neighbors in such a way to induce a non-linear path such as a ring.

Lastly (for now, anyway!) the restoring force means that sums of momentum transfers must be quantized when applied to another field infinitesimal. I realized it’s possible that a given infinitesimal could get a momentum transfer sum greater than that induced by a single twist. In order for particle energy conservation to work, among many other things, there must be a mechanism for chopping off excess momentum transfer and the restoring connection force provides this. The excess momentum transfer disappears if the sum is not enough to induce a second rotation. I can see from simple geometry that the result will always be a single path, it’s not possible for two twists to suddenly emerge from one. I think if you study this, you will realize this is true, but I can’t do that subject justice here right now. I’ll think about a clear way to describe this in a following post, especially since this work will set the groundwork for the field math.

I’ve come up with more, but this is a good point to stop here for now. You can go back to more interesting silly cat videos now 🙂

Agemoz

Precursor Field and Renormalization

September 25, 2016

As I work out the details of the Precursor Field, I need to explain how this proposal deals with renormalization issues. The Precursor Field attempts to explain why we have a particle zoo, quantization, and quantum entanglement–and has to allow the emergence of force exchange particles for at least the EM and Strong forces. Previous efforts by physics theorists attempted to extend the EM field properties so that quantization could be derived, but these efforts have all failed. It’s my belief that there has to be an underlying “precursor” field that allows stable quantized particles and force exchange particles to form. I’ve been working out what properties this field must have, and one thing has been strikingly apparent–starting with an EM field and extending it cannot possibly work for a whole host of reasons.

As mentioned extensively in previous posts, the fundamental geometry of this precursor field is an orientable 3D+I dimensional vector field. It cannot have magnitude (otherwise E-hv quantization would not be constrained), must allow vector twists (and thus is not finite differentiable ie, not continuous) and must have a preferred orientation in the I direction to force an integral number of twists. Previous posts on this site eke out more properties this field must have, but lately I’ve been focusing on the renormalization problem. There are two connections at play in the proposed precursor field–the twist quantization force, which provides a low-energy state in the I direction, and a twist propagation force. The latter is an element neighborhood force, that is, is the means by which an element interacts with its neighbors.

The problem with any neighborhood force is that any linear interaction will dissipate in strength in a 3D space according to the central force model, and thus mathematically is proportionate to 1/r^2. Any such force will run into infinities that make finding realistic solutions impossible. Traditional quantum field theory works around this successfully by invoking cancelling infinities, renormalizing the computation into a finite range of solutions. This works, but the precursor field has to address infinities more directly. Or perhaps I should say it should. The cool thing is that I discovered it does. Not only that, but the precursor field provides a clean path from the quantized unitary twist model to the emergence of magnetic and electrostatic forces in quantum field theory. This discovery came from the fact that closed loop twists have two sources of twists.

The historical efforts to extend and quantize the EM field is exemplified by the DeBroglie EM wave around a closed loop. The problem here, of course, is that photons (the EM wave component) don’t bend like this, nor does this approach provide a quantization of particle mass. Such a model, if it could produce a particle with a confined momentum of an EM wave, would have no constraint on making a slightly smaller particle with a slightly higher EM wave frequency. Worse, the force that bends the wave would have the renormalization problem–the electrostatic balancing force is a central force proportionate function, and thus has a pole (infinity) at zero radius. This is the final nail in the coffin of trying to use an EM field to form a basis for quantizing particles.
The unitary twist field doesn’t have this problem, because the forces that bend the twist are not central force proportionate. The best way to describe the twist neighborhood connection is as a magnetic flux model. In addition, there are *two* twists in a unitary twist field particle (closed loop of various topologies). There is the quantized vector twist from I to R3 and back again to I, that is, a twist about the propagation axis. And, there is also the twist that results from propagating around the closed loop. Similar to magnetic fields, the curving (normal) force on a twist element is proportionate to the cross-product of the flux change with the twist element propagation direction. My basic calculations show there is a class of closed loop topologies where the two forces cancel each other along a LaGrangian minimum energy path, thus providing a quantized set of solutions (particles). It should be obvious that neither connection force is central force dependent and thus the  renormalization problem disappears.  There should be a large or infinite number of solutions, and the current quest is to see if these solutions match or resemble the particle zoo.

In summary, this latest work shows that the behavior of the precursor field has to be such that central force connections cannot be allowed (and thus forever eliminates the possibility that an EM field can be extended to enable quantization). It also shows how true quantization of particle mass can be achieved, and finally shows how an electrostatic field must emerge given that central force interactions cannot exist at the precursor field level. EM fields must emerge as the result of force exchange particles because it cannot emerge from any central force field, thus validating quantum field theory from a geometrical basis!

I thought that was pretty cool… But I must confess to a certain angst.

Is anybody going to care about these ideas? I know the answer is no. I imagine Feynman (or worse, Bohr) looking over my shoulder and (perhaps kindly or not) saying what the heck are you wasting your time for. Go study real physics that produces real results. This speculative crap isn’t worth the time of day. Why do I bother! I know that extraordinary claims require extraordinary proof–extraordinary in either experimental verification or deductive proof. Neither option, as far as I have been able to think, is within my reach. But until I can produce something, these ideas amount to absolutely nothing.

I suppose one positive outcome is personal–I’ve learned a lot and entertained myself plus perhaps a few readers on the possibility of how things might work. I’ve passed time contemplating the universe, which I think is unarguably a better way to spend a human life than watching the latest garbage on youtube or TV. Maybe I’ve spurred one person out there to think about our existence in a different way.

Or, perhaps more pessimistically, I’m just a crackpot. The lesson of the Man of La Mancha is about truly understanding just who and what you are, and reaching for the impossible star can doing something important to your character. I like the image that perhaps I’m an explorer of human existence, even if perhaps not a very good one–and willing to share my adventures with any of you who choose to follow along.

Agemoz