Posts Tagged ‘parity’

CP Parity in the Unitary Twist Field

July 31, 2017

In the last post, I showed how the unitary twist field theory enables a schematic method of describing quark combinations, and how it resolved that protons are stable but free neutrons are not. I thought this was fascinating and proceeded to work out solutions for other quark combinations such as the neutral Kaon decay, which you will recognize as the famous particle set that led to the discovery of charge parity violation in the weak force. My hope was to discover the equivalent schematic model for the strange quark, which combined with an up or down quark gives the quark structure for Kaons. That work is underway, but thinking about CP Parity violation made me realize something uniquely important about the Unitary Twist Field Theory approach.

CP Parity violation is a leading contender for an explanation why the universe appears to have vastly more matter than antimatter. Many theories extend the standard model (in the hopes of reconciling quantum effects with gravity). Various multi-dimensional theories and string theory approaches have been proposed, but my understanding of these indicates to me that no direct physical or geometrical explanation for CP Parity violation is built in to any of these theories. I recall one physicist writing that any new theory or extension of the standard model had better have a rock-solid basis for CP Parity violation, why CP symmetry gets broken in our universe, otherwise the theory would be worthless.

The Unitary Twist Field does have CP Parity violation built in to it in a very obvious geometric way. The theory is based on a unitary directional field in R3 with orientations possible also to I that is normal to R3. To achieve geometric quantization, twists in this field have a restoring force to +I. This restoring force ensures that twists in the field either complete integer full rotations and thus are stable in time (partial twists will fall back to the background state I direction and vanish in time).

But this background state I means that this field cannot be symmetric, you cannot have particles or antiparticles that orient to -I!! Only one background state is possible, and this builds in an asymmetry to the theory. As I try to elucidate the strange quark structure from known experimental Kaon decay processes, it immediately struck me that because the I poles set a preferred handedness to the loop combinations, and that -I states are not possible if quantization of particles is to occur–this theory has to have an intrinsic handedness preference. CP Parity violation will fall out of this theory in a very obvious geometric way. If there was ever any hope of convincing a physicist to look at my approach, or actually more important, if there was any hope of truth in the unitary twist field theory, it’s the derivation of quantization of the particle zoo and the explanation for why CP Parity violation happens in quark decay sequences.