But it’s time to let it go. Actually making a contribution is way beyond my reach, there are so many details that I was glossing over or handwaving my way through that really require deep analysis and rigorous attention to detail. By the time I started elaborating on my twist model of quarks and started digging in, I got this massive sense of oversimplifying an extraordinarily complex problem. When I came up with that pole correlation for masses between electrons, up quarks, and down quarks, I thought–kewl, this is interesting! But then and now I have strong doubts it really could be that simple. The twist theory really doesn’t illuminate anything new–I thought it would, but it hasn’t. It’s just an idea, a vision, of how I thought things could work.

Several times I thought in the last month, don’t give up–it’s been fascinating to think about, I haven’t been trolled much for this speculation I’ve been doing, and it’s been fun posting about what I’m doing.

But now I’m thinking, life needs to move on, I’ve done what I wanted and it’s time to find a new path, pursue new adventures.

So, to my followers and other readers I say: May all your physics studies be as enlightening as this has been for me! May you find true insights that will lead to the betterment of the human condition. May you encourage young scientists or amateurs in your path to be honest and thorough without being too critical or harsh in their young ideas!

For me, it’s time to sail on, so–Goodbye to all!

]]>One problem with blogs describing research is the linear sequence of posts makes it really hard to unravel the whole picture of what I am doing, so I created this summary (scroll down the right-hand entries past the “About Me” to the Unitary Twist Field Theory) . Obviously it leaves out a huge amount, but should give you a big picture view of this thing and my justification for pursuing it in one easy-to-get place.

The latest: I discovered that the effort to work out the quark interactions in the theory yielded a pretty exact correlation to the observed masses of the electron, up quark and down quark. In this theory, quarks and the strong force mediated by gluons is modeled by twist loops that have one or more linked twist loops going through the center. This twist loop link could be called a pole, and while the twist rotation path is orthogonal to the plane of the twist loop, the twist rotation is parallel and thus will affect the crossproduct momentum that defines the loop curvature. Electrons are a single loop with no poles, and thus cannot link with up or down quarks. Up quarks are posited to have one pole, and down quarks have two. A proton, for example, links two one-pole up quarks to a single two-pole down quark.

The twist loop for an up quark has one pole, a twist loop path going through the center of it. This pole acts with the effect of a central force relation similar (but definitely is not identical to an electromagnetic force) to a charged particle rotating around a fixed charge source–think an atom nucleus with one electron orbiting around it. The resulting normal acceleration results from effectively half the radius of the electron loop model, and thus has four times the rotation frequency and thus 4 times the mass of an electron. The down quark, with two poles, doubles the acceleration yet again, thus giving 8 times the mass of an electron.

It will be no surprise to any of you that this correlates to the known rest masses of the electron, up quark, and down quark: .511MeV, 2.3MeV, and 4.8MeV.

I can hear you screaming to the rafters–enough with the crackpot numerology! All right, I hear you–but I liked seeing this correlation anyway, no matter what you all think!

Agemoz

]]>The sim work clearly shows that if two closed loops such as rings are pulled apart to the point where the twists of each ring approach each other, there are dramatic effects on the rings that will separate or destroy both rings. I was hoping to have the sim show that such linked rings will try to avoid (ie, push away from each other) what might be called a momentum collision as the twists approach each other, but right now I am running into a problem with the sim code. I call this problem “momentum splitting”, and it results from the lattice computation of momentum progression in the sim. Since momentum almost never transfers exactly into an adjacent sim cell, either the conserved momentum must be split between two or more cells, or all of it must be sent to one of the adjacent cells, with the result that some of the momentum location information is lost or rapidly spreads throughout the array. In both cases, the sim results go badly awry from actual expected results. I am working on a solution that enforces conservation of momentum by using the second option, but keeping a separate array of momentum parameters such as exact location in each cell.

So–a roadblock to getting good sim results, but often working out details of the sim yield insights to the actual model. One thing I noticed about the twist field model (not the sim of the model) is that there is a very small probability that two twist rings will collide in such a way that the twist rotation angle happens to be identical. If this happens, there is sort of a quantum tunneling effect where the two rings can separate if a random jiggling of the rings hits this coinciding angle rotation. At that point, the rings would have to disintegrate or form other loop combinations (my hypothesis) because the ring energies are not correct for stability on their own. I originally thought this was a fatal flaw in the linked ring idea for quarks–but then I realized that the vast majority of quark combinations are not stable, they decay via the weak force. Up to now, I couldn’t see any way to get the Unitary Twist Field to model the random effect of the weak force, but this is a great solution, I think! The random thermal motion of our existence would be constantly pulling and pushing the linked rings in a very chaotic way, and every once in a while the ring rotations at the point of collision would line up and cause a dramatic breakup of the linked structure. Just about all of the linked quark combinations experience decay in varying amounts of time, and this model of the unitary twist field provides a means for this to happen.

So–how do I explain the stability of the proton? And why does the nearby presence of a proton make a neutron stable? I suspect that in the case of the proton, even if this ring tunneling happens, the decay must result in something else that the separated rings can decay into (to conserve momentum, among other things). If there isn’t something to decay into, the proton component tunneling of quark rings won’t occur even if the rotations at the collision point line up correctly.

The neutron case is a lot more interesting, I don’t have an answer but I continue to think about it. My leading hypothesis is that the proton-neutron combination is actually some unique combination of linked rings that can decay into separate particles (free neutron and proton).

Agemoz

]]>It’s been an amazing week working on the unitary twist field sim. Most of the kinks in the sim coding are fixed, and what I’m finding in the sim results I think are astonishing. Here’s what I’m finding:

a. There is now little doubt in my mind that there is a class of precursor fields based on a rotation (unitary) vector field that produces stable linearly propagating twist particles. I’ve attempted a geometric proof, and within the limits of the assumptions I am making, the particles appear to have to be able to exist in this type of field and are stable, and so far the sim results are confirming this.

b. An unexpected result from the sim–the particles have to move as a single rotation at the limiting speed of the sim. This is exciting because photons cannot exist unless they move at the speed of light, and this sim shows linear twists match this behavior. As I concluded in my last post, I realized that special relativity has to have a part to play here and in the sim it shows up as only one possible speed for the linear twist.

c. You cannot form a stable linear twist unless you do one full rotation as defined by the local background state. Any other partial twist dissipates (or has to be absorbed by something, e.g, virtual particles). There is an asymmetry in the leading and trailing edge angular momentum of any linear twist–the only way to resolve this is if both ends have the same change of momentum (leading edge incurs a momentum in the next cell, the trailing edge cancels out that momentum). This property prohibits a twist from being stable unless it completes a rotation, in which case the same change in momentum happens on both the leading and trailing edge.

d. It is looking probable (but not proven yet) that you can curve the twist path depending on the change of rotation vectors in the path of the linear twist. As mentioned in one my prior posts, a closed loop will create a changing tilt of rotation vectors internal and external to the loop, thus (in theory) sustaining the closed loop. This is a big difference between this precursor field and attempts to create stable particles out of an EM field. You cannot change the path of a photon with some EM field. However, for the unitary twist field, I’ve already shown that this should be possible geometrically (see back a few posts), but now I need to confirm it with a sim.

UPDATE 1: here is a picture–probably the most unimpressive picture ever produced by a GPU graphics card! Nevertheless, there’s a lot of computing that was done to generate it, and clearly shows both propagation and preservation of the emitted twist. The junk to the upper left is left over from the initial conditions that emitted the twist, I’ll fix the startup code shortly, but I thought you’d like to see the early results that I thought were exciting…

UPDATE 2: Better pictures coming. Just like with real photons, I can make these particles any length, modeling the continuous range of frequencies available. What is shown above is a fairly short “photon”, but I now have pictures of much lower frequency, hence longer, photon wave rotations. I am still getting perfect reproduction of the photon model as it travels, thus solidifying the conclusion that this field yields stable solitons. Next up–geometrically I can see that I should be able to get two parallel photons to lase–that is, phase lock. I’ll start the sim with two out-of-phase photons near each other and see if they lock. Stay tuned!

end of UPDATE 1 and 2

My biggest concern with thinking I have found something interesting as opposed to “not even wrong” or trivial is that I would have expected at least a few thousand real physicists would have already found this field behavior, perhaps fleshed this out a lot more than I have, and found it wanting as a theory underlying the formation of real-world particles. This thing is simple enough that I just cannot believe that a lot of people haven’t already been here. I also still have a ton of unanswered questions (for example, issues with the background state concept, whether the +/-I state is necessary, and so on).

So–other than having a lot of fun exploring this, I don’t see anything yet that means I should write a paper or something. I’ll keep plowing away. As an uncredentialed amateur, I know it’s more likely I’ll win the lottery than being taken seriously by a professional researcher, and I’m fine with that.

One thing that’s going to be really fun is setting up a sim of a major collision of some sort–I hope I don’t induce a cybernetic singularity and wipe out the universe….

Agemoz

]]>I now have the sim working for one class of particles, the linear twist. I fixed various problems in the code and now am getting reasonable pictures for both the ring and the linear twist. Something is still not right on the ring, but the linear twist is definitely stable with one class of test parameters. This is an important finding because my previous work seemed to be unable to create a model of a photon (linear twist), so I had focused on the ring case. However, last night (New Year’s Eve, what a great way to start the New Year!) I realized the problem was my assumptions on how to set up the linear twist initial conditions.

Discrete photons are always depicted as a spiral rotation of orthogonal field vectors in a quantized lump. I could not make my sim do this, both ends of the lump would not dissipate correctly no matter how I set up the initial conditions and test parameters–the clump always eventually disappeared. I suddenly realized this picture of a photon is not correct–you have to go to the frame of reference of the photon motion to see what’s really going on. The correct picture in the photon’s frame of reference is not a clump nor a spiral, but simply a column of vectors all in phase from start to finish (emission and absorption). It’s the moving frame of reference at light speed that makes the photon ends appear to start and stop in transit. The sim easily simulates the column case indefinitely. It also should correctly simulate the ring case for the same reason–and in this case since the frame of reference goes around the ring, the spiral nature of the twist becomes apparent in the sim. It should also create an effective momentum (wants to move in a straight line) to counteract the natural tendency to shrink into non-existence, but I don’t have the correct test parameters that that is happening yet.

One thing that should please some of you–all of you? The background state so far is not necessary to produce these results! That concept was necessary to produce a quantized lump for the linear photon, but as I noted, that’s not how photons work in their frame of reference. That simplifies the theory–and the sim computation. And, most importantly as I suggested in the previous post, seems to validate the concept of assuming that a precursor rotation (twist) vector field can form particles.

]]>The first results from the Unitary Twist Field Theory are in, and they are showing a three ring circus! Here are the sim output pictures. The exciting news is that the field does produce a stable particle configuration that is very independent of the initial boundary conditions and strength of the background state and the neighborhood connection force–the same particle emerges from a wide variety of startup configurations. Convergence appears visible after about 20 iterations, and remains stable and unchanging after 200000 steps. So–no question that this non-linear field produces stable solitons, thus validating my hypothesis that there ought to be some field that can produce the particle zoo. Will this particular field survive investigation into relativistic behavior, quantum mechanics and produce the diversity of particles we see in the real world? I created this theory based on the E=hv constraint that implies a magnitude-free field and a background state, a rotation vector field that includes the +/-I direction, and many other things discussed in previous posts, so I think this field is a really good guess. However, it wouldn’t surprise me at all that I don’t have this right and that changes to the hypothetical field will be necessary. As usual, as in any new line of research work, it’s quite possible I’m doing something stupid or this is the result of some artifact of how I am doing the simulation–it doesn’t look like it to me, but that’s always something to watch out for. However, here I am seeing good evidence I have validated this line of inquiry–looking for a non-linear precursor field that produces the particles and force-exchange particles of the Standard Model.

It’s very hard to visualize even with the 4D to 2D projected slices I show here. I color coded the +I (background state) dimension as red, -I direction as black, and combined all three real dimensions to blue-green. Note there is no magnitude in a unitary twist field (mathematicians probably would prefer I call this a R3+I rotation unitary vector field), so intensity here simply indicates the angular proximity to the basis vector (Rx, Ry, Rz, or +/-I). For now, you’ll have to imagine these images all stacked on top of each other, but I’ll see if I can get clever with Mathematica to process the output in a 3D plot.

Studying these pictures shows a composite structure of two parallel R3 rings and an orthogonal interlocking -I ring, and something I can’t quite identify, kind of a bridge in the center between the two rings, from these images. These pictures are the 200000 step outputs. You can ignore the image circles cursors in some of the screen capture shots, I should have removed those!

More investigation results to come, stay tuned!

Agemoz

]]>This work is very much in its infancy, but has already yielded some very interesting insights. The crucial question I want to answer at this point is whether this field can yield stable closed loop twists. The background state potential is crucial for distinguishing this theory from any that are based on linear equations such as Maxwell’s field equations. The background state concept emerged from the need to quantize field behavior geometrically via unit twists in the field. Conceptualizing the behavior of a rotation space in two or even three dimensions appears to show that it should be possible to create stable solitons, but is this true in four dimensions over time–the R3 of our existence plus the +/- I dimension needed for the background state orientation.

I have been working hard to work out the rules for the R3 + I field, but four dimensions is very hard to visualize and work out a geometry of theorems. The simulation environment is designed to assist with this effort.

The sim work has already exposed some pretty critical understanding of what a twist ring would look like. I had originally envisioned a ring of twisting vectors surrounded by the background rotation state +I. However, it turns out things are a lot more complicated than that. If the twisting vectors are in R3 and not in I (the current hypothesis for the simplest closed loop particle), this cannot be stable unless the center of the ring is pointing to -I. The surprising result was that both the +I and -I are stable states when a +I potential is applied! By itself, the -I state would be metastable but any neighborhood connection would make both +I and -I stable–in 2 dimensions and possibly in 3 dimensions–still thinking through the latter case. But the theory requires 4 dimensions, is the ring stable in that case? My mind cannot swallow the 4 dimensional case, but the sim work showed some fascinating elaboration of the R3 + I case.

The -I center must be surrounded by a shell of real (R3) rotations (see illustration below). There must be a transition from +I to R3 to -I and back again, but in all dimensions of R3. There is only one possible way to create a surface of contiguous R3 vectors. I was able to rule out the normal vectors on the surface, because there appears to be no way to transition contiguously to +I or internally to -I without creating a discontinuity. But a surface of tangental vectors would work, provided that the tangental vectors at the equator of the sphere point in the same circumerential (eg, x-y) direction, gradually pointing up to the normal direction, which would be -I at the center, +/- Z at the poles of the surface, and +I outside of the surface. In essence, this work is showing there is only one possible way to form a ring and it actually is enclosing the -I center with a surface of real vectors. Essentially the ring looks like a complementary pair of vortexes with the ring being the common top of the vortexes. It should be possible to create more complex structures with multiple -I poles, but right now the important question is this: is this construct stable. I’m hoping that the sim will verify if this rotation vector model of the ring dissipates in some way. I can envision that the -I core cannot unwind, that it is locked and stable, but it is really hard to prove that in my mind in four dimensions. The sim should show it, I’ll keep you posted.

]]>This did get me thinking about the big-picture view of what I am doing. I can imagine the overarching intelligent being or beings (either God or real physicists) overlooking what I am doing–“Oh look, a little doofus putzing around on a computer thinking he will find new physics, God and the meaning of existence!” Yup, that’s exactly what I’m doing, although there’s been a huge amount of guided thinking before initiating the sim process.

There has to have been hundreds of thousands of real physicists who have created field sims with various ideas for algorithm kernels and nobody has found something that’s even close to a match for observed science. What makes me think I can do what so many have already tried? Here’s what I think: it’s partly because of what we know of EM field central force behavior. I’m betting that a large percentage of people think the underlying field that gives rise to EM fields, gravity and particles must have central force behavior, and set up field kernels that dissipate over distance. As I’ve noted in a previous post, this cannot work for a bunch of reasons, one of the strongest being that QFT interactions never work this way (all forces are mediated by quantized exchange particles that do not dissipate). So why do EM fields and gravity have central force behavior? It’s not because the underlying field is central force. I discovered several years ago something that’s probably obvious to any physicist–any point source granular emission system will look like a central force system if the far-field perspective is taken. This means that the underlying precursor field has to be far different than the obvious guesses based on experiment.

Some realistic means for providing field quantization must be built into the field kernel for QFT to work. I thought for a long time and realized the only geometric means to get quantization specified by E=hv is to provide a modulus function on the precursor field with a preferred state. What I mean by that is that field elements cannot have magnitude, they can only rotate, and in addition have a preferred “lowest energy” rotation state. This rotation can propagate in either a line or in some system of closed loops, but must have an integer number of turns (or twists, thus forming the name of the theory: Unitary Twist Field). Now, for a particle such as an electron or photon or proton to be stable in our existence (R3), the lowest energy direction must point in another direction dimension than in R3, otherwise our universe would have sampling noise detectable by radio telescopes, the Michelson Morley ether detector, or similar sensors. I arbitrarily point this dimension in the I direction. When I set up this list of constraints on a precursor field, I can analytically show that there are two “wells” of field states that should form stable states and hence solitons in the field. Once I lad locked down the constraints necessary for an underlying field, I was able to develop a field kernel that should give rise to a particle zoo, and then I was ready to set up a sim or see if more analytic work could be done.

I’m guessing that most physicists have access to simulation tools like mine (actually likely far better), but I would be pretty surprised if someone has taken the path I have taken. I am very fond of using the “million physicist tool”–that is, it’s been around 100 years and no smart physicist has come up with an underlying field kernel, so any scheme I come up with *must* be “out-of-the-box” thinking. That is, a good rule for investigations that aren’t worth doing is an investigation that has likely been done by 1 or more of a million physicists. As I said, I suspect a lot of people have gone down various central force paths because of EM and gravitational field behavior–but I discovered years ago that a precursor field cannot be central force, and cannot be linear, along with a bunch of other painfully worked out constraints I just mentioned.

In other words, I don’t think anybody else has been in this room I’m standing looking around in. I see promise here (the two energy wells provided by this field kernel) and am hopeful that a CUDA sim will shine light on it.

Agemoz

]]>I give it the “precursor” name because there are many fields in known physics, and this precursor field has to form a foundation for all of them. I’ve pursued many paths in my investigation, described in many of my previous posts, and in summary have determined the following:

The precursor field must be single valued, unitary (directional only, no magnitude), continuous, but not necessarily analytic. It must form from a basis of three real (physical) dimensions but the field element can also point in an imaginary dimension. Because the field value is unitary with no magnitude component, it can be modeled as a rotation field. The field must have a background state pointing in the imaginary direction. I also discovered that the precursor field and its operators cannot be one of the existing fields in physics such as the EM field. It’s a new field that creates the basis for something like the quantized photon mediated EM field or the strong and weak force interactions in quarks.

If you question any of these requirements, I’d recommend looking back in previous posts where I justify my thinking–this simple paragraph just summarizes much of the work I have done in the past. I don’t want to revisit that right now, but to give you new news of a big discovery I have made about this field in the last few weeks.

I have been preparing both an analytic infrastructure and a computer sim that will hopefully provide some level of validation or refutation of the precursor field concept. The analytic work sets up the algebra that the sim will follow.

There are many issues with assuming that a continuous field will produce a particle zoo, but the biggest is what might be called the soliton problem. You can easily prove that Maxwell’s field equations cannot produce a stable particle, so historically, many efforts to quantize or otherwise modify these equations have been done without success. Compton and DeBroglie are famous for attempting this using an EM field (waves around a ring, sphere of charge, etc.) but no one has succeeded in a theory that successfully confines the EM field potentials into a stable soliton. I’ve long been convinced that you cannot use an EM field as a particle basis, and the QFT model of exchange particles (quantized photons in the case of EM field interactions) supports this way of thinking.

I discovered that the aforementioned precursor field can form either of two types of stable potential wells. The fact that the precursor field is directional only, thus field values cannot go to zero, combined with the omnipresent tendency to go to the default background state, leads both to quantization (only full integer twists out of and then back into the background state are stable) and to the formation of stable potential wells around either the background state or its opposite. I found that the background state tendency can be described as a force that is strongest when an element’s direction is normal to the background state, but is zero at either the background state or its opposite! It turns out it is nearly linear and thus forms a potential well near both zeroes. Thus a stable particle can form around a negative background state pole. You could also form a stable positive pole in a negative background state region (think antiparticles), and could even link together or overlap multiple particles in a chain or set of rings and have the result be stable. I can even visualize spontaneous formation of particle/antiparticle pairs so crucial to QFT, but that’s jumping the gun a bit right now.

It’s such an incredibly important step forward to find a field with a set of operators that could form stable particles, and I believe I’ve done that. The key is having the scalar field be unitary and having a preferential orientation–this set of field characteristics appears to succeed at producing solitons where all others have failed.

UPDATE: While this was an important finding, further work has shown that the background force has to be accompanied by a neighborhood connection, otherwise a discontinuity or possibly other cases may destabilize the particle. To truly prove that this field can produce stable particles, all issues and details need to be fully flushed out. I suspect that the idea is on the right path but I have more work to do.

Agemoz

]]>CP Parity violation is a leading contender for an explanation why the universe appears to have vastly more matter than antimatter. Many theories extend the standard model (in the hopes of reconciling quantum effects with gravity). Various multi-dimensional theories and string theory approaches have been proposed, but my understanding of these indicates to me that no direct physical or geometrical explanation for CP Parity violation is built in to any of these theories. I recall one physicist writing that any new theory or extension of the standard model had better have a rock-solid basis for CP Parity violation, why CP symmetry gets broken in our universe, otherwise the theory would be worthless.

The Unitary Twist Field does have CP Parity violation built in to it in a very obvious geometric way. The theory is based on a unitary directional field in R3 with orientations possible also to I that is normal to R3. To achieve geometric quantization, twists in this field have a restoring force to +I. This restoring force ensures that twists in the field either complete integer full rotations and thus are stable in time (partial twists will fall back to the background state I direction and vanish in time).

But this background state I means that this field cannot be symmetric, you cannot have particles or antiparticles that orient to -I!! Only one background state is possible, and this builds in an asymmetry to the theory. As I try to elucidate the strange quark structure from known experimental Kaon decay processes, it immediately struck me that because the I poles set a preferred handedness to the loop combinations, and that -I states are not possible if quantization of particles is to occur–this theory has to have an intrinsic handedness preference. CP Parity violation will fall out of this theory in a very obvious geometric way. If there was ever any hope of convincing a physicist to look at my approach, or actually more important, if there was any hope of truth in the unitary twist field theory, it’s the derivation of quantization of the particle zoo and the explanation for why CP Parity violation happens in quark decay sequences.

Agemoz

]]>