The Mystery of Particle Quark Combinations

Whenever I lose my car keys, I look in a set of established likely places. If that doesn’t work, I have two choices–look again thinking I didn’t look closely enough, or decide the keys are not where I would expect and start looking in unusual places.

There is a huge amount of data about quarks and the particle zoo, more specifically the collection of quark combinations forming the hadron family of particles. We have extensive experimental data as to what quarks combine to form protons, neutrons, mesons and pions and other oddities, many clues and data about the forces and interactions they create–but no underlying understanding about what makes quarks different or why they combine to form the particles they do–or why there are no known free quarks.

I could travel down the path of analyzing the quark combinations for insights, but I can absolutely guarantee that has already been tried by every one of the half million or so (guess on my part) physicists out there, all of whom have probably about twice my IQ. This is an extremely important investigative clue–I assume everything I’ve done has already been tried. Like the car keys, I could try where so many have already been, or I could work hard to do something unique, especially in the case of an unsolved mystery like quark combinations.

In my work simulating the unitary twist field theory, I have a very unusual outcome that perhaps fits this category–an unexpected (and unlikely to have been duplicated) conclusion. Unitary twist theory posits that there is an underlying precursor single valued field in R3 + I (analogous to the quantum oscillator space) that is directional only, no magnitude. This field permits twists, and restores to the background state I. Out of such a field can emerge linear twists that propagate (photons) the EM field (from collections of photons) and particles (closed loop twists). Obviously, photons cannot curve (ignoring large scale gravitational effects), so unitary twist theory posits that twists experiences a force normal to the twist radius. The transverse twists of photons experience that force in the direction of propagation, but the tangental twist must curve, yielding stable closed loop solutions.

Now let’s examine quarks in the light of unitary twist theory. In this theory, electrons are single loops with a center that restores to I (necessary for curvature and geometric quantization to work. The last few posts describe this in more detail). Quarks are linked loops. The up quark has the usual I restoring point, and an additional twist point that passes through it which I will call poles. This point is the twist from another closed loop. It’s not possible for this closed loop to be an electron, which has no poles other than I, but it could be any other quark. The down quark is a closed loop with two such poles.

The strong force is hypothesized to result from the asymptotic force that results when trying to pull linked quarks apart–no force at all until the twists approach each other, then a rapidly escalating region of twist crossing forces.

So far, so good–it’s easy to construct a proton with this scheme. But a neutron is a major problem–there’s no geometric way to combine two down quarks and an up quark in this model.

Here is where I have a potentially unique answer to the whole quark combinations mystery. Up to this far I can guarantee that every physicist out there has gotten this far (some sort of linked loop solution for quarks–the properties of the strong force scream for this type of solution). But it occurred to me that the reason a free neutron is unstable (about 15 seconds or so) is because the down quark in the unitary twist version of a neutron is unstable. It does have a pole left over, with nothing to fill it, no twist available. The field element at this pole is pointing at Rx, but there’s nothing to keep it there. It eventually breaks apart–and look at how beautifully the unitary twist field shows how and why it breaks up into the experimentally observed proton plus electron. Notice that the proton-neutron combination that forms deuterium *is* stable–somehow the nearby proton does kind of a Van Der Waals type resolution for the unconnected down quark pole. No hypothesis yet on the missing neutrino for the neutron decay, but still, I’m hoping you see some elegance in how unitary twist field theory approaches the neutron problem.

A final note–while I’m extremely reluctant to perform numerology in physics, note the interesting correlation of mass to the square of the number of poles. It might be supportive of this theory, or maybe just a numerical coincidence.

Agemoz

Advertisements

Tags: , , , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: