Experimental Confirmation of Lattice-Free Spacetime

In my previous post, I posited that spacetime cannot be a lattice at Planck scale distances, and by sheer coincidence, this completely different experimental report also confirms the likelihood that spacetime is smooth at this scale:

http://www.space.com/17399-gamma-ray-photons-quantum-spacetime.html

A smooth spacetime means that Planck scale lumpiness (a lattice of one of the types I describe in the previous post) will not explain quantization.  I suspected that anyway, because quantization is scale independent.  Low energy photons are quantized over distances that are enormously vast (hundreds of orders of magnitude) compared to Planck scale distances, so I did not see how a lattice could induce that quantization.

The field twist is also scale independent, so is another nice arrow in the quiver for unitary twist field theory.  But I’m grappling with a big problem as I develop the specular simulator for the unitary field twist theory.  The probability of electron motion is affected by its ability to self absorb a virtual photon, and this probability is directly proportionate to the fine structure constant.  I believe that this number is the square of the probability to emit and the probability to absorb, making each have about an 8 percent chance of occurring.  Physicists have absolutely no clue why this probability is what it is.  QFT gives no guidance but uses the experimentally determined value of interaction probability as a foundation for every quantum interaction of particles and fields.

As usual, I am trying to find a geometrical reason that the unitary field twist theory might give that probability–some ideas, but nothing obvious.  I have to figure something out before I can even start constructing the specular sim.

Agemoz

Advertisements

Tags: , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: